Let the coefficients of third, fourth and fifth terms in the expansion of $\left(x+\frac{a}{x^{2}}\right)^{n}, x \neq 0,$ be in the ratio $12: 8: 3 .$ Then the term independent of $x$ in the expansion, is equal to ...... .

  • [JEE MAIN 2021]
  • A

    $5$

  • B

    $3$

  • C

    $4$

  • D

    $6$

Similar Questions

The sum of the binomial coefficients of ${\left[ {2\,x\,\, + \,\,\frac{1}{x}} \right]^n}$ is equal to $256$ . The constant term in the expansion is

The ratio of the coefficient of the middle term in the expansion of $(1+x)^{20}$ and the sum of the coefficients of two middle terms in expansion of $(1+x)^{19}$ is $....$

  • [JEE MAIN 2021]

If the coefficients of ${5^{th}}$, ${6^{th}}$and ${7^{th}}$ terms in the expansion of ${(1 + x)^n}$be in $A.P.$, then $n =$

The absolute difference of the coefficients of $x^{10}$ and $x^7$ in the expansion of $\left(2 x^2+\frac{1}{2 x}\right)^{11}$ is equal to

  • [JEE MAIN 2023]

If for positive integers $r > 1,n > 2$ the coefficient of the ${(3r)^{th}}$ and ${(r + 2)^{th}}$ powers of $x$ in the expansion of ${(1 + x)^{2n}}$ are equal, then

  • [IIT 1983]